
A modified floor field cellular automata model for pedestrian evacuation simulation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2008 J. Phys. A: Math. Theor. 41 385104

(http://iopscience.iop.org/1751-8121/41/38/385104)

Download details:

IP Address: 171.66.16.150

The article was downloaded on 03/06/2010 at 07:11

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/41/38
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 41 (2008) 385104 (12pp) doi:10.1088/1751-8113/41/38/385104

A modified floor field cellular automata model for
pedestrian evacuation simulation

Ren-Yong Guo and Hai-Jun Huang

School of Economics and Management, Beijing University of Aeronautics and Astronautics,
Beijing 100083, People’s Republic of China

E-mail: haijunhuang@buaa.edu.cn

Received 21 February 2008, in final form 11 July 2008
Published 22 August 2008
Online at stacks.iop.org/JPhysA/41/385104

Abstract
Considering the fact that the interaction among pedestrians in a high-density
crowd is asymmetric, accumulative and transferable, we present a modified
floor field cellular automata model for simulating the pedestrian evacuation. In
this model, the space for evacuation is discretized into smaller cells, every
pedestrian is allowed to occupy multiple cells and the interaction among
pedestrians is characterized by their own inertia and the forces received or
to be imposed on others. By numerical simulation the effects of the pedestrian
movement manner and the model parameters on evacuation efficiency are
investigated. The results obtained by our modified model are compared with
those by the original floor field model.

PACS numbers: 45.70.Mg, 05.65.+b, 05.50.+q

1. Introduction

Recently, the pedestrian flow problem has attracted much attention of researchers [1–21].
Understanding the movement behavior of pedestrians in various situations is very important in
designing and improving public places such as waiting rooms in railway stations, supermarkets,
banquet halls, meeting rooms, theatres and movie houses. The dynamic properties of
ordinary pedestrian crowds, including the self-organization phenomena, have been observed
and successfully reproduced by various physical methods [22–25]. However, pedestrian
evacuation is much more difficult to observe and study than normal pedestrian flow because
of the danger and panic caused by incidents. A real-life experiment for evacuation is
almost impossible. This encourages researchers to develop efficient modeling approaches
[2, 3, 6, 8, 10, 13–21].

Existing models for studying pedestrian flow can be classified into two categories, namely
continuous [1–5, 19–21] and discrete ones [6–18]. The former mainly includes the social force
(SF) model [2] and the discrete choice (DC) model [5]. The social force model was applied
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to study the influence of the degree of panic on the evacuation velocities of pedestrians
[19, 20] and modified for qualitatively analyzing the influence of various approaches for the
interaction between the pedestrians on the resulting velocity–density relation [21]. The latter
mainly includes the lattice gas (LG) model [6–10] and cellular automata (CA) model [11–18].
In the CA models [26–31], time and space are discretized. This makes these models ideally
suited for large-scale computer simulations. A cellular automata model, which quantifies
the evacuation process with three basic forces, was proposed in [18] and its performance was
compared with the social force model. For the discrete model the idea of finer discretization of
the space has been introduced and studied in [6, 8, 17]. There are good reasons to introduce a
finer discretization of space for the discrete models [16]. First, finer discretization corresponds
to a more accurate representation of geometrical structures in a natural way. Second, some
situations require the use of velocities more than once. If one wants to keep the timescale
unchanged this has to be compensated by introducing a smaller length scale. Third, it would
be interesting to consider the case where the cell size approaches zero in order to make contact
with such models that are based on a continuous representation of space, e.g., the social force
model [2]. Furthermore, pedestrians of different sizes may occupy different numbers of cells,
which requires a finer discretization of the space for formulating heterogeneous pedestrians’
behavior. It is thus conceivable that the existing discrete models should be improved by at
least discretizing the space in a finer method.

The floor field cellular automata (FFCA) model [14–17] has the advantage of reproducing
most of the collective effects of pedestrian dynamics and taking less computational cost than
the continuous models. In this paper, we propose a modified FFCA model in which the
space for evacuation is discretized into smaller cells and every pedestrian is allowed to occupy
multiple cells. The interaction among pedestrians is characterized by their own inertia and
the forces received or to be imposed on others. These interactions are transmitted among
pedestrians in an accumulative and asymmetric manner. We apply this modified model in a
typical scenario where people in some danger try to escape from a room, analyze the impacts
of several model parameters on evacuation efficiency and compare the results with those by
the original floor field model.

2. The model

In our model, the space is represented with two-dimensional foursquare cells. Each cell is
approximately 13.3 × 13.3 cm2, and a pedestrian occupies 3 × 3 cells. Suppose that there
are N pedestrians randomly distributed in a room at initial time. In each simulation time
step, pedestrians move one cell size in forward, backward, left and right directions or remain
unmoved.

Figure 1 shows the current position of a pedestrian and the possible movement directions
in the next time step. The real line circle represents the current pedestrian and the dashed
circle the pedestrian after moving to right. The choice of a moving direction is governed by
a so-called transition probability which represents the possibility that the pedestrian intends
to move a cell size in this direction. The transition probability Pi,j towards a heavy gray cell
(i, j) is determined by the local dynamics and floor fields on heavy gray cells as follows:

Pi,j = H exp(kSSi,j ) exp(kDDi,j )µ0,0ξi,j , (1)

where H is a normalization factor for ensuring
∑

(i,j) Pi,j = 1, Si,j and Di,j denote the static
and dynamic fields of the heavy gray cell (i, j), respectively. The static field Si,j , initialized
at the beginning of the model run, is a gradient with high values nearby desirable areas (i.e.,
the exits of the evacuation space) and low values elsewhere. The dynamic field Di,j is the
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Figure 1. Possible transitions of a pedestrian and the corresponding transition probabilities.

number of bosons, dropped by moving pedestrians, on the cell (i, j). Initially, all cells do
not contain bosons. When a pedestrian moves a cell size, he or she drops a boson at each
departure cell. Suppose that each boson decays with a probability δ in every time step and
those bosons without decaying will diffuse (i.e., randomly move to a neighboring cell) with a
probability α. In equation (1), kS and kD are two positive parameters for scaling Si,j and Di,j ,
respectively. The parameter µ0,0 is given by

µ0,0 =
{

1, ε � exp(−θ(S − S0,0))

1 − ϕi,j , ε > exp(−θ(S − S0,0))
(2)

where ε is a number between 0 and 1 generated randomly. This says, µ0,0 equals 1 with a
probability exp(−θ(S − S0,0)) and 1−ϕi,j with the probability 1− exp(−θ(S − S0,0)). Here,
the parameter ϕi,j indicates whether the three neighboring cells (i.e., the two light gray cells
and the cell (i, j) in figure 1, as a pedestrian intends to move to right) are occupied. It is 0
if these three cells are not occupied and 1 otherwise. S is the maximum value of static floor
fields associated with all cells on the whole space, and S0,0 is the static field of the current cell
(0, 0) of the pedestrian. The parameter θ represents an intention that the current pedestrian
minds whether or not the three neighboring cells in the direction to the cell (i, j) are occupied
by other pedestrians. For a given position, when other parameters in equations (1) and (2)
remain unchanged, a smaller parameter θ implies that the pedestrians mind less whether the
target cells are occupied by others, i.e., the pedestrians are more willing to push and jostle
other pedestrians. In addition, equation (2) contains such a mechanism that, for a position
with a larger static floor field (or a position closer to exits), pedestrians consider less whether
or not the target position is occupied by others. In a word, it represents the degree of push and
bump among pedestrians.

Finally, we explain the parameter ξi,j in equation (1). It represents the obstacle in the three
neighboring cells (i.e., the two light gray cells and the cell (i, j) in figure 1, as a pedestrian
intends to move to right), and equals 0 if there exists obstacle (e.g., the room wall) in these
three neighboring cells and 1 otherwise.

Note that the above transition probability is not used to probabilistically select a movement
direction, but determine a direction in which a pedestrian intends to move. In fact, a pedestrian
who intends to move in a direction may have to move in another direction because of the strong
action imposed by other pedestrians. In addition, it is impossible for a pedestrian to move to
his or her desired cells which have been occupied by others. Considering these two factors, in
this paper we use the following rules to regulate the pedestrian movement. Each pedestrian has
some inertia that drives him or her to move or remain unchanged. In the intended direction,
an action that a pedestrian receives consists of both the force imposed by others and the
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Figure 2. Direction of the force that a pedestrian imposes on someone who occupies his or
her neighboring cells in the intended movement direction. In case 1, three neighboring cells are
occupied; in cases 2 and 3, two and one neighboring cells are occupied, respectively.

own inertia. In other directions, however, the action only refers to the force imposed by
others. A pedestrian selects a direction that has the largest received action as the movement
direction. If these neighboring cells in the movement direction are not occupied by other
pedestrians, he or she moves a cell size; otherwise, he or she imposes a force on pedestrians
who are occupying these cells. Thus and so, the crowd forces are repeatedly transmitted
from pedestrian to pedestrian through the inter-personal contacts; consequently the interaction
among pedestrians becomes accumulative and asymmetric. The own inertia plays role in the
intended direction only. Note that the intended direction and the moving direction may be
different due to the interactions.

We now analyze the interaction among pedestrians in detail. Let Fn
i,j denote the action

that pedestrian n receives in a direction to the cell (i, j), f mn
i,j be the force that pedestrian m

imposes on pedestrian n in the direction to the cell (i, j) and en be the inertia that pedestrian
n has for moving or remaining unchanged. For simplicity, we assume that for all pedestrians,
the inertia is uniformly, randomly distributed in an interval [e, e]. We then have

Fn
i,j =

∑
m

f mn
i,j + τi,j en, (3)

where τi,j is 1 if the direction to the cell (i, j) is a direction in which pedestrian n intends to
move and 0 otherwise.

The actual movement direction is determined by comparing the so-called relative action
RFn

i,j . A pedestrian moves in a direction which has the maximal relative action. The relative
action of a direction is defined as the action difference between this direction and its contrary
direction, e.g., RFn

0,1 = Fn
0,1 − Fn

0,−1. Let the relative action of the position (0, 0) be
RFn

0,0 = Fn
0,0. If the three neighboring cells in an actual movement direction are not occupied

by others, the pedestrian moves a cell size in the direction. Otherwise, the pedestrian imposes a
force on the pedestrians who are occupying these cells. As illustrated in figure 2, the direction
of the force that a pedestrian imposes on another pedestrian depends upon the relative positions
of these two pedestrians. The forces that pedestrians 1, 2 and 3 impose on pedestrians 4, 5
and 6, respectively, are given below:

f 14
−1,0 = λ RF1

−1,0, f 25
0,1 = λ RF2

−1,0, f 36
0,1 = λ RF3

−1,0, (4)

where λ(0 < λ < 1) is a parameter reflecting the sensitivity to the relative action in the
transmission process. A smaller λ corresponds to a smaller sensitivity to the force. In
contrast, a larger λ means that the force is preserved in the transmission process and the
interaction among pedestrians would become strong. It is believed that the above regulation
is reasonable because in reality pedestrians generally push those in front of them for jostling
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Figure 3. The flow chart of a model run.

their paths through a crowd. The force transferred to pedestrians in front may prevent them
from exiting the room as well as being in favor of them exiting. Whether the force is helpful
for their evacuation is mainly dependent upon their position.

A detailed description of the model run is shown in figure 3. In this figure the counter T

is used to decide whether all pedestrians exit from the room. The simulation stops if T = N

(i.e., all pedestrians have exited from the room). A pedestrian is removed from the room if he
or she is within the door cells (denoted by light gray in figure 4). In each discrete time step all
pedestrians are updated in a random sequence.

The floor field model had been modified by Henein et al [31] by considering the interaction
among pedestrians. In that swarm force model, the interaction is represented by the force field.
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Figure 4. The door cells denoted by light gray.

In our model, however, the interaction is formulated by the finer discretization of space and the
inertia of pedestrians. Both forces in these two models are accumulative and transferable, but
the mechanisms of forming them are different. In [31], if the force exerting on a pedestrian in
a direction is more than some value, the pedestrian then moves along the direction, otherwise
the pedestrian selects a movement direction probabilistically. The process in our model is
contrary, i.e., a pedestrian initially selects a direction for movement intention and then may
change the movement direction due to the forces exerted by others. Thus, our model can
formulate the degree of push and bump among pedestrians near exits (see the numerical
simulations presented later); the swarm force model cannot do so. In [31], moreover, if a
pedestrian receives forces three times more than his/her pushing force, along a direction,
he/she moves along the direction. In our model, if the sum of forces that a pedestrian receives
along a direction is the maximum compared with that of other directions, the pedestrian moves
along the direction. In reality pedestrians generally push those in front of them for jostling
their paths through a crowd. The force transferred to the pedestrians in front may prevent
them from exiting the room and be in favor of them to exit. Clearly, this state of affairs is not
considered in the swarm force model.

3. Simulation results

The scenario of simulation is as follows. There are 240 pedestrians who attempt to escape
from a room having 90 × 120 cells (i.e., the density is 0.2 pedestrians per nine cells). This
room has a door sized by nine cells. The door is in the north wall of the room and contains
the cells 58–66 from west. The length of the simulation time step is 0.1 s. The inertia
interval is [e, e] = [1, 1.5]. The static floor field of each cell is determined using the method
developed in [15]. In the following experiments, we conduct 20 simulations for each value of
the investigated parameter and record the mean of evacuation times. The evacuation time for
each simulation is the average of all pedestrians’ evacuation times.

First, we examine the influences of the parameters θ and λ on the evacuation of pedestrians,
as the decay probability is δ = 0.5 and the diffusion probability α = 0.5. Figures 5 and 6
show the average evacuation times against θ and λ, respectively.

The parameter θ in equation (2) represents the degree of push and bump among
pedestrians. A relatively smaller θ -value means more unorganized movement of pedestrians,
more push and bump among them. When the θ -value approaches positive infinity, µ00 takes
1 − ϕij with probability approaching 1. This says pedestrians only move to cells unoccupied
by others and they do not impose interactions on others. Hence, our model becomes the
original FFCA model with finer cells [17]. Figure 5 shows the relationship between the mean
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Figure 5. Average evacuation time against the parameter θ (other parameters: δ = 0.5, α = 0.5,

λ = 0.6, [e, e] = [1, 1.5] and the initial density = 0.2 pedestrian per 9 cells): (a) kD = 0.1;
(b) kS = 1.5.
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Figure 6. Average evacuation time against parameter λ (other parameters: δ = 0.5, α = 0.5,

θ = 0.1, [e, e] = [1, 1.5] and the initial density = 0.2 pedestrian per 9 cells): (a) kD = 0.1;
(b) kS = 1.5.

value of evacuation time and the θ -value. With the increase of the θ -value, the evacuation
time decreases. This states that considering interactions among pedestrians in the process of
evacuation will increase the evacuation time. The degree of increase is related to the degree of
push and bump. When pedestrians do not like body congestion (i.e., the θ -value is very small),
they move in a careless and sloppy manner. As a result, the evacuation time is relatively long.
When pedestrians can endure body congestion, they would move in an organized manner,
which causes the evacuation time to decrease. In a word, relatively less push and bump among
pedestrians, especially their organized movement in the case of panic (i.e., larger parameter θ ),
can decrease the evacuation time. But, there exist limits for people to endure the congestion,
this says, the evacuation time changes little when the θ -value exceeds some value. The faster-
is-slower [2] refers to the phenomenon that when pedestrians’ velocities are relatively high
in a crowd near an exit, it takes them more time to go through the exit. Here, we illustrate
that stronger push and bump among pedestrians, being independent of pedestrians’ velocities,
will result in increasing of the evacuation time. This is different from the faster-is-slower
phenomenon.
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The parameter λ in equation (4) represents the sensitivity to the relative action in the
transmission process. A larger λ means that the force is preserved in the transmission process
and the interaction among pedestrians would become strong. Figure 6 shows that the mean
value of evacuation time increases with increasing λ-value on the whole. This is in accordance
with our empirical feeling because larger interaction among pedestrians necessarily leads to
longer evacuation time.

The value of kS can be viewed as a measure of the pedestrians’ knowledge about the
location of the exit. A large kS implies a motion to the exit on the shortest possible path. For a
relatively small kS , pedestrians will perform a random walk and just find the exit by chance. In
figure 5(a), it can be seen that the evacuation time decreases as the kS-value changes from 0.5
to 2.0 for different θ -values. When the kS-value increases from 2.0 to 5.0, for a θ -value less
than 0.01 the evacuation time increases; however, for a θ -value more than 0.01 the evacuation
time decreases. The reason for this result may be that as kS-value increases from 2.0 to 5.0,
all pedestrians are more willing to move along the shortest path regardless of others, hence
relatively large push and bump among them (θ -value is relatively large) lead to more severe
conflicts and increase the evacuation time. As push and bump among pedestrians become
relatively small (θ -value is relatively small), increasing evacuation time for push and bump
is relatively small compared with decreasing evacuation time for moving along shorter path,
hence the sum of the two sections decreases. One can see from figure 6(a) that evacuation
time declines with increasing kS-value, regardless of the λ-values. This illustrates that the
parameter λ basically does not affect the declining trend of evacuation time with the increasing
parameter kS .

The parameter kD reflects the tendency that a pedestrian follows the leader of others in
the process of evacuation. It can be seen from figures 5(b) and 6(b) that the evacuation time
first decreases and afterward increases with increasing kD . It implies that relatively stronger
or weaker herding behavior can influence evacuation time [15]. This finding is basically not
affected by the degree of push and bump among pedestrians.

Figure 6(a) shows that the ascending rate of evacuation time against λ-value increases
when kS takes a larger value. A large kS implies that pedestrians have more information about
the shortest distance to the exit and their decisions become deterministic. In this case, the
neighboring pedestrians will intend to compete for the same routes to the door. Consequently,
stronger interaction among them occurs and more time is required for reaching the exit.
Contrarily, for a small kS pedestrians perform random walks and the neighboring ones have
less push and bump among each other in their movements. As a result, the evacuation time
is less sensitive to the λ-value. Figure 6(b) shows that the ascending rate of evacuation
time against λ-value decreases when kD takes a larger value. This can be explained below.
For a larger kD more pedestrians would like to follow others for leaving the room. In this
case, there exist relatively less interactions among pedestrians. Then, the evacuation time
becomes less sensitive to the λ-value. For the above analyses, it should be recalled that
λ(0 < λ < 1) is a parameter reflecting the sensitivity to the relative actions in the transmission
process.

Interactions among pedestrians probably make their actual movement direction deviate
from the intended direction. We now analyze how the interactions affect the pedestrians’
movements. We here introduce two indices, namely the occupation number and the deviation
occupation number. The occupation number for a cell is defined as the number of time steps
for which the cell is occupied by pedestrians in the process of evacuation. The deviation
occupation number for a cell is the number of time steps for which the cell is occupied by
the pedestrians whose movement direction is different from the intended direction due to
interactions. The second number can be regarded as a measure of the degree of push and
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(a) (b) (c)

(d) (e) ( f )

Figure 7. Pseudo-color plots delineating the deviation occupation numbers for all cells (other
parameters: kS = 1.5, kD = 0.5, δ = 0.5, α = 0.5, [e, e] = [1, 1.5] and the initial density = 0.2
pedestrian per 9 cells): (a) θ = 0.001 and λ = 0.6; (b) θ = 0.01 and λ = 0.6; (c) θ = 0.1 and
λ = 0.6; (d) θ = 0.01, λ = 0.4; (e) θ = 0.01 and λ = 0.6; (f ) θ = 0.01, λ = 0.8.

(a) (b) (c)

(d) (e) ( f )

Figure 8. Pseudo-color plots delineating the ratio of the deviation occupation number to the
occupation number for all cells (other parameters: kS = 1.5, kD = 0.5, δ = 0.5, α = 0.5,

[e, e] = [1, 1.5] and the initial density = 0.2 pedestrian per 9 cells): (a) θ = 0.001 and λ = 0.6;
(b) θ = 0.01 and λ = 0.6; (c) θ = 0.1 and λ = 0.6; (d) θ = 0.01, λ = 0.4; (e) θ = 0.01 and
λ = 0.6; (f ) θ = 0.01, λ = 0.8.

bump among pedestrians. Figures 7 and 8 respectively plot the deviation occupation number
and the ratio of the deviation occupation number to the occupation number for every cell
subject to the different parameters θ and λ. One can see that the number and the ratio for cells
nearer to the exit are relatively large. This states that more push and bump among pedestrians
exist near the exit because in the case of urgency pedestrians would more likely leave the
room ahead. Here we can define a so-called congestion zone which is the area covering these
exit nearby cells with relatively large deviation occupation numbers, for example, the light
gray areas in figure 7. Comparing figures 7(a)–(c), we can find that as the λ-value remains
unchanged, with increasing θ -value less cells near the exit have relatively large deviation
occupation numbers, and the maximum value of the deviation occupation number decreases
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Figure 9. Average evacuation time against kS (kD = 0.3, δ = 0.5 and α = 0.5): (a) θ takes three
values but λ is fixed; (b) λ takes three values but θ is fixed.

and the congestion zone diminishes gradually. This phenomenon illustrates that more push and
bump among pedestrians force more pedestrians near exit to move along directions deviating
from the intended directions. From figures 7(d)–(f ) where θ -value remains unchanged,
we can see that with increasing λ-value, more and more cells near the exit have larger and
larger deviation occupation numbers, hence the congestion zone is enlarged. This indicates
that when pedestrians are sensitive to interactions more push and bump occur near the exit.
Similar phenomena can be observed in figure 8. It is interesting that the push and bump
probably occur at positions away from the exit, but the occurring frequency is relatively lower
in comparison to the positions near the exit.

Note that the above phenomena were not reproduced by the model in [31]. This is because
in our model, the degree of push and bump among pedestrians and the area of the congestion
zone can be controlled by adjusting the parameters θ and λ. For instance, in figure 7(a), the
size of the congestion zone in the diagonal direction is larger than that in the vertical direction,
and in figure 7(b), the shape of the congestion zone is a semi-circle. As observed in reality,
the shape of the congestion zone is basically a semi-circle. Our model provides flexibility to
reproduce various shapes of the congestion zone if required.

Finally, we compare the results of our model and the original floor field model. Simulation
scenarios for these two models are identical and described by the following parameters: the
room is discretized into 30 × 40 cells, the initial density of a pedestrian is 0.2 pedestrian per
cell, the door is sized by 3 cells located in the north wall of the room and contains the cells
20–22 and the time step is 0.3 s.

Figure 9 shows the average evacuation time as a function of the parameter kS . For both
models, with increasing parameter kS the evacuation time declines and the rate of decreasing
becomes smaller and smaller. It can be seen from figure 9(a) that when the parameter θ is
relatively small (i.e., θ = 0.01), the curve of our modified model intersects with that of the
floor field model at kS ≈2.3. When kS is less than this value the evacuation time given by our
modified model is smaller than that given by the floor field model, a contrary result holds when
kS exceeds the value. A small θ -value corresponds to large interactions among pedestrians.
In the case of kS taking small value, some pedestrians likely push those randomly walking in
the front to move along the best direction to the exit. Hence, pedestrians may spend less time
to leave the room. As kS becomes large, strong interactions among pedestrians prevent them
from moving along the shortest path, thus they have to spend more time to leave the room.
When the parameter θ takes large values, implying weak interactions among pedestrians, the
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evacuation time given by our modified model is always smaller than that given by the floor
field model. In figure 9(a), the two curves corresponding to θ = 1 and θ = 100, respectively,
are overlapped because our model is not sensitive again to the θ -value when it is larger than
1, as shown in figure 5.

Figure 9(b) shows the results when the θ -value remains unchanged (i.e., θ = 0.1). For
different λ-values and kS-values the evacuation time by the floor field model is always larger
than that by our modified model. This is because that the parameter θ takes a relatively large
value, even if pedestrians are sensitive to interactions (i.e., λ takes value approaching to 1);
interactions among the pedestrians are not strong enough to have the pedestrians conflicting
among each other and spending more time to leave the room.

We have also numerically compared the results given by the two models with respect to
various combinations of kD, kS, δ and α. It is found that the evacuation time given by our
modified model is always less than that given by the floor field model, and not highly sensitive
to the variations of some model parameters such as the floor field model. It is believed that
the reason for these outcomes should be attributed to the finer discretization of the evacuation
space in simulation.

4. Summary

For simulating the pedestrian evacuation process, we presented a modified floor field cellular
automata model by discretizing the space into smaller cells and considering the asymmetric,
accumulative and transferable interaction among pedestrians. We conducted simulations in a
typical scenario where people in some danger try to escape from a room. The results show that
more unorganized movements, stronger push and bump among pedestrians will result in the
increase of the evacuation time. Relatively stronger or weaker herding behavior can influence
the evacuation time too. Push and bump among pedestrians will force more individuals near
exit to move along a direction deviating from the intended direction. It was demonstrated that
the degree of push and bump among pedestrians and the size and shape of the congestion zone
can be adjusted as required by calibrating the model parameters. We also found that in the
same simulation scenarios, the evacuation time by the original floor field model is larger than
that by our modified model. Our modified model is not more sensitive to some parameters
compared with the original floor field model.

Applying the modified model to investigate the evacuation process in a building with
multiple obstacles and two or more doors is our on-going work.
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